الفهرس الالي لمكتبة كلية العلوم و علوم التكنولوجيا
Détail de l'auteur
Auteur Léonard Todjihounde |
Documents disponibles écrits par cet auteur
Affiner la recherche Interroger des sources externes
Calcul différentiel / Léonard Todjihounde
Titre : Calcul différentiel : cours et exercices corrigés Type de document : texte imprimé Auteurs : Léonard Todjihounde, Auteur Mention d'édition : 2e éd. Editeur : Toulouse : Cepadues-Ed. Année de publication : impr. 2009 Importance : 1 vol. (399 p.) Présentation : ill.fig., couv. ill. Format : 15X21 cm. ISBN/ISSN/EAN : 978-2-85428-912-1 Prix : 30 EUR Note générale : Éditeur : Cépaduès Éditions; $ {number}nd édition (5 novembre 2009)
Langue : Français
Broché : 400 pages
ISBN-10 : 2854289129
ISBN-13 : 978-2854289121
Poids de l'article : 458 g
Dimensions : 14.5 x 2.3 x 20.5 cmLangues : Français (fre) Mots-clés : espaces de banach diferentiables accroissements finis implicites rang fonctions integration taylor Équations différentielles formes différentielles RAPPELS SUR LES ESPACES DE BANACH APPLICATIONS DIFFERENTIABLES THEOREME DES ACCROISSEMENTS FINIS INVERSION LOCALES ET FONCTIONS IMPLICITES THEOREMES DU RANG DIFFERENTIELLES D'ORDRE SUPERIEUR FONCTIONS CONVEXES DIFFERENTIABLES INTEGRATION DES FONCTIONS REGLEES FORMULES RELATIFS D'UNE FONCTION SOUS-VARIETES DE Rn equations differentielles formes differentielles Index. décimale : 515.3 Résumé : Le calcul différentiel est un outil dont tout mathématicien, quelle que soit sa spécialité, doit en posséder les rudiments. Même les spécialistes de mathématiques discrètes ne peuvent s en passer, car l on ne peut bien explorer, bien appréhender le discret que si l on connaît un peu mieux le continu, avec les nombreux et ingénieux outils mathématiques qui y ont été développés au cours du temps, que si l on a une idée des limites et restrictions de ces outils et des possibilités éventuelles de leur adaptation ou de s en inspirer face à des situations discrètes. Destiné à l usage aussi bien des étudiants en licence de mathématiques que des enseignants, cet ouvrage débute par un rappel des pré-requis topologiques nécessaires pour aborder les notions exposées dans la suite. L auteur a voulu ce rappel sur les espaces vectoriels normés le plus détaillé et le plus complet possible pour permettre à l utilisateur de faire le point de ces notions sans trop d effort et sans perdre du temps à les rechercher dans les livres de topologie. L approche pédagogique utilisée permet au lecteur de cerner assez rapidement et dans tous leurs contours les concepts exposés et de comprendre dès le début l architecture des démonstrations des théorèmes et propositions. Outre les chapitres classiques généralement traités dans les livres de calcul différentiel, un chapitre sur les fonctions convexes différentiables attirera l attention du lecteur sur les propriétés intéressantes qui découlent du couplage de ces deux notions ; quant au chapitre sur les théorèmes du rang, il fait ressortir l importance et les conditions de linéarisation d une application au voisinage d un point. TABLE DES MATIERES Préface 1 RAPPELS SUR LES ESPACES DE BANACH 2 APPLICATIONS DIFFERENTIABLES 3 THEOREME DES ACCROISSEMENTS FINIS 4 INVERSIONS LOCALES ET FONCTIONS IM-PLICITES 5 THEOREMES DU RANG 6 DIFFERENTIELLES D ORDRE SUPERIEUR 7 FONCTIONS CONVEXES DIFFERENTIABLES183 8 INTEGRATION DES FONCTIONS REGLEES 193 9 FORMULES DE TAYLOR 10 EXTREMA RELATIFS D UNE FONCTION 235 11 SOUS-VARIETES DE Rn 12 EQUATIONS DIFFERENTIELLES 13 FORMES DIFFERENTIELLES.SOMMAIRE:
1-RAPPELS SUR LES ESPACES DE BANACH
2-APPLICATIONS DIFFERENTIABLES
3-THEOREME DES ACCROISSEMENTS FINIS
4-INVERSION LOCALES ET FONCTIONS IMPLICITES
5-THEOREMES DU RANG
6-DIFFERENTIELLES D'ORDRE SUPERIEUR
7-FONCTIONS CONVEXES DIFFERENTIABLES
8-INTEGRATION DES FONCTIONS REGLEES
9-FORMULES RELATIFS D'UNE FONCTION
10-SOUS-VARIETES DE Rn
11-equations differentielles
12-formes differentiellesNote de contenu : Bibliogr. p. 393-395. Index Calcul différentiel : cours et exercices corrigés [texte imprimé] / Léonard Todjihounde, Auteur . - 2e éd. . - Toulouse : Cepadues-Ed., impr. 2009 . - 1 vol. (399 p.) : ill.fig., couv. ill. ; 15X21 cm.
ISBN : 978-2-85428-912-1 : 30 EUR
Éditeur : Cépaduès Éditions; $ {number}nd édition (5 novembre 2009)
Langue : Français
Broché : 400 pages
ISBN-10 : 2854289129
ISBN-13 : 978-2854289121
Poids de l'article : 458 g
Dimensions : 14.5 x 2.3 x 20.5 cm
Langues : Français (fre)
Mots-clés : espaces de banach diferentiables accroissements finis implicites rang fonctions integration taylor Équations différentielles formes différentielles RAPPELS SUR LES ESPACES DE BANACH APPLICATIONS DIFFERENTIABLES THEOREME DES ACCROISSEMENTS FINIS INVERSION LOCALES ET FONCTIONS IMPLICITES THEOREMES DU RANG DIFFERENTIELLES D'ORDRE SUPERIEUR FONCTIONS CONVEXES DIFFERENTIABLES INTEGRATION DES FONCTIONS REGLEES FORMULES RELATIFS D'UNE FONCTION SOUS-VARIETES DE Rn equations differentielles formes differentielles Index. décimale : 515.3 Résumé : Le calcul différentiel est un outil dont tout mathématicien, quelle que soit sa spécialité, doit en posséder les rudiments. Même les spécialistes de mathématiques discrètes ne peuvent s en passer, car l on ne peut bien explorer, bien appréhender le discret que si l on connaît un peu mieux le continu, avec les nombreux et ingénieux outils mathématiques qui y ont été développés au cours du temps, que si l on a une idée des limites et restrictions de ces outils et des possibilités éventuelles de leur adaptation ou de s en inspirer face à des situations discrètes. Destiné à l usage aussi bien des étudiants en licence de mathématiques que des enseignants, cet ouvrage débute par un rappel des pré-requis topologiques nécessaires pour aborder les notions exposées dans la suite. L auteur a voulu ce rappel sur les espaces vectoriels normés le plus détaillé et le plus complet possible pour permettre à l utilisateur de faire le point de ces notions sans trop d effort et sans perdre du temps à les rechercher dans les livres de topologie. L approche pédagogique utilisée permet au lecteur de cerner assez rapidement et dans tous leurs contours les concepts exposés et de comprendre dès le début l architecture des démonstrations des théorèmes et propositions. Outre les chapitres classiques généralement traités dans les livres de calcul différentiel, un chapitre sur les fonctions convexes différentiables attirera l attention du lecteur sur les propriétés intéressantes qui découlent du couplage de ces deux notions ; quant au chapitre sur les théorèmes du rang, il fait ressortir l importance et les conditions de linéarisation d une application au voisinage d un point. TABLE DES MATIERES Préface 1 RAPPELS SUR LES ESPACES DE BANACH 2 APPLICATIONS DIFFERENTIABLES 3 THEOREME DES ACCROISSEMENTS FINIS 4 INVERSIONS LOCALES ET FONCTIONS IM-PLICITES 5 THEOREMES DU RANG 6 DIFFERENTIELLES D ORDRE SUPERIEUR 7 FONCTIONS CONVEXES DIFFERENTIABLES183 8 INTEGRATION DES FONCTIONS REGLEES 193 9 FORMULES DE TAYLOR 10 EXTREMA RELATIFS D UNE FONCTION 235 11 SOUS-VARIETES DE Rn 12 EQUATIONS DIFFERENTIELLES 13 FORMES DIFFERENTIELLES.SOMMAIRE:
1-RAPPELS SUR LES ESPACES DE BANACH
2-APPLICATIONS DIFFERENTIABLES
3-THEOREME DES ACCROISSEMENTS FINIS
4-INVERSION LOCALES ET FONCTIONS IMPLICITES
5-THEOREMES DU RANG
6-DIFFERENTIELLES D'ORDRE SUPERIEUR
7-FONCTIONS CONVEXES DIFFERENTIABLES
8-INTEGRATION DES FONCTIONS REGLEES
9-FORMULES RELATIFS D'UNE FONCTION
10-SOUS-VARIETES DE Rn
11-equations differentielles
12-formes differentiellesNote de contenu : Bibliogr. p. 393-395. Index Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité ST17799 515.3/51.1 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Exclu du prêt