الفهرس الالي لمكتبة كلية العلوم و علوم التكنولوجيا
Détail de l'auteur
Auteur Michel Minoux |
Documents disponibles écrits par cet auteur
Affiner la recherche Interroger des sources externes
Graphes et algorithmes / Michel Gondran
Titre : Graphes et algorithmes Type de document : texte imprimé Auteurs : Michel Gondran, Auteur ; Michel Minoux, Auteur Mention d'édition : 4e éd. revue et augmentée Editeur : Paris : Éd. Tec & doc Année de publication : 2009 Collection : Collection EDF R&D, ISSN 1773-5300 Importance : 1 vol. (XXXI-784 p.) Présentation : ill., couv. ill. en coul. Format : 18X25 cm ISBN/ISSN/EAN : 978-2-7430-1035-5 Prix : 195 EUR Note générale : Notes Éditeur : Tec & Doc Lavoisier; 4e édition (28 avril 2009)
Langue : Français
Broché : 784 pages
ISBN-10 : 2743010355
ISBN-13 : 978-2743010355
Poids de l'article : 1.38 kg
Dimensions : 16 x 24 cmibliogr. IndexLangues : Français (fre) Mots-clés : Graphes et algorithmes matrices connexité algèbre de chemins et dioides arbres et arborescences flots et réseaux de transport couplages et b-couplages parcours eulériens et hamiltoniens programmation linéaire nombres entiers Index. décimale : 518. Analyse Numérique Algorithme-Méthodes Numériques Résumé : Les modèles et les algorithmes de graphes se sont imposés aujourd'hui dans de nombreuses disciplines, aussi bien dans les sciences de base (physique, chimie, biologie, sciences humaines, informatique théorique et algorithmique) que dans les sciences de l'ingénieur (automatique, optimisation de systèmes, économie et recherche opérationnelle, analyse de données, ingénierie des grands réseaux de communication de type internet). Cette nouvelle édition est la seule à offrir un panorama aussi complet de ces outils et de leurs plus récents développements. Graphes et algorithmes rend compte de la puissance de modélisation procurée par les graphes, et de la disponibilité d'une vaste panoplie d'algorithmes opérationnels. Cette nouvelle édition développe les nombreux résultats, souvent fins, conduisant à la réduction de la complexité des algorithmes (flots, chemins, arbres), les nouvelles familles d'algorithmes approchés (ou métaheuristiques) en particulier ceux inspirés de la biologie (algorithmes génétiques, ou ceux imitant le comportement des colonies de fourmis), les algorithmes fondés sur des processus aléatoires (algorithmes itératifs aléatoires ou algorithmes gloutons aléatoires). Proposant au lecteur environ 230 exercices et plus de 100 problèmes concrets modélisés, cette nouvelle édition s'est enrichie aussi d'une présentation plus aérée et de nombreuses références bibliographiques. Graphes et algorithmes s'adresse à un large éventail de chercheurs et ingénieurs des laboratoires et bureaux d'études, et de futurs ingénieurs et étudiants en licence et master.
SOMMAIRE:
1-GéNéRALITéS SUR LES GRAPHES
2-LE PROBLéME DU PLUS CHEMIN
3-ALGéBRES DE CHEMINS ET DIODES
4-ARBRES ET ARBORSCENCES
5-FLOTS ET RéSEAUX DE TRANSPORT
6-FLOTS AVEC MULTIPLICATEURS.MULTIFLOTS
7-COUPLAGES ET B-COUPLAGES
8-PARCOURS EULéRIENS ET HAMILTONIENS
9-MATROIDES
10-LES PROBLéMES DIFFICILES DE LA CLASSE NP
11-les algorithmes d'énumération par séparation-évaluation et propagation de contraintes
12-algorithmes approchés et métaheuristiques
13-programmation linéaire
14-programmation linéaire en nombres entiers
15-relaxation lagrangienne et résolution du probléme dual
16-programmation dynamique
17-les problémes de ratio minimumNote de contenu : Graphes et algorithmes (Français) Broché – 28 avril 2009
de Michel Gondran (Auteur), Michel Minoux (Auteur)
programmation linéaire
programmation linéaire en nombres entiers
relaxation lagrangienne et résolution du probléme dual
programmation dynamique
les problémes de ratio minimumGraphes et algorithmes [texte imprimé] / Michel Gondran, Auteur ; Michel Minoux, Auteur . - 4e éd. revue et augmentée . - Paris : Éd. Tec & doc, 2009 . - 1 vol. (XXXI-784 p.) : ill., couv. ill. en coul. ; 18X25 cm. - (Collection EDF R&D, ISSN 1773-5300) .
ISBN : 978-2-7430-1035-5 : 195 EUR
Notes Éditeur : Tec & Doc Lavoisier; 4e édition (28 avril 2009)
Langue : Français
Broché : 784 pages
ISBN-10 : 2743010355
ISBN-13 : 978-2743010355
Poids de l'article : 1.38 kg
Dimensions : 16 x 24 cmibliogr. Index
Langues : Français (fre)
Mots-clés : Graphes et algorithmes matrices connexité algèbre de chemins et dioides arbres et arborescences flots et réseaux de transport couplages et b-couplages parcours eulériens et hamiltoniens programmation linéaire nombres entiers Index. décimale : 518. Analyse Numérique Algorithme-Méthodes Numériques Résumé : Les modèles et les algorithmes de graphes se sont imposés aujourd'hui dans de nombreuses disciplines, aussi bien dans les sciences de base (physique, chimie, biologie, sciences humaines, informatique théorique et algorithmique) que dans les sciences de l'ingénieur (automatique, optimisation de systèmes, économie et recherche opérationnelle, analyse de données, ingénierie des grands réseaux de communication de type internet). Cette nouvelle édition est la seule à offrir un panorama aussi complet de ces outils et de leurs plus récents développements. Graphes et algorithmes rend compte de la puissance de modélisation procurée par les graphes, et de la disponibilité d'une vaste panoplie d'algorithmes opérationnels. Cette nouvelle édition développe les nombreux résultats, souvent fins, conduisant à la réduction de la complexité des algorithmes (flots, chemins, arbres), les nouvelles familles d'algorithmes approchés (ou métaheuristiques) en particulier ceux inspirés de la biologie (algorithmes génétiques, ou ceux imitant le comportement des colonies de fourmis), les algorithmes fondés sur des processus aléatoires (algorithmes itératifs aléatoires ou algorithmes gloutons aléatoires). Proposant au lecteur environ 230 exercices et plus de 100 problèmes concrets modélisés, cette nouvelle édition s'est enrichie aussi d'une présentation plus aérée et de nombreuses références bibliographiques. Graphes et algorithmes s'adresse à un large éventail de chercheurs et ingénieurs des laboratoires et bureaux d'études, et de futurs ingénieurs et étudiants en licence et master.
SOMMAIRE:
1-GéNéRALITéS SUR LES GRAPHES
2-LE PROBLéME DU PLUS CHEMIN
3-ALGéBRES DE CHEMINS ET DIODES
4-ARBRES ET ARBORSCENCES
5-FLOTS ET RéSEAUX DE TRANSPORT
6-FLOTS AVEC MULTIPLICATEURS.MULTIFLOTS
7-COUPLAGES ET B-COUPLAGES
8-PARCOURS EULéRIENS ET HAMILTONIENS
9-MATROIDES
10-LES PROBLéMES DIFFICILES DE LA CLASSE NP
11-les algorithmes d'énumération par séparation-évaluation et propagation de contraintes
12-algorithmes approchés et métaheuristiques
13-programmation linéaire
14-programmation linéaire en nombres entiers
15-relaxation lagrangienne et résolution du probléme dual
16-programmation dynamique
17-les problémes de ratio minimumNote de contenu : Graphes et algorithmes (Français) Broché – 28 avril 2009
de Michel Gondran (Auteur), Michel Minoux (Auteur)
programmation linéaire
programmation linéaire en nombres entiers
relaxation lagrangienne et résolution du probléme dual
programmation dynamique
les problémes de ratio minimumRéservation
Réserver ce document
Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité ST14206 518/53.1 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Exclu du prêt ST14207 518/53.2 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Disponible ST14208 518/53.3 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Disponible Programmation mathématique / Michel Minoux
Titre : Programmation mathématique : théorie et algorithmes Type de document : texte imprimé Auteurs : Michel Minoux, Auteur Mention d'édition : 2e éd. Editeur : Paris : Éd. Tec & doc Année de publication : 2008 Importance : 1 vol. (XXIX-711 p.) Présentation : ill., couv. ill. en coul. Format : 18X25 cm. ISBN/ISSN/EAN : 978-2-7430-1000-3 Prix : 75 EUR Note générale : Notes biblioÉditeur : Tec & Doc Lavoisier; 2e édition (14 décembre 2007)
Langue : Français
ISBN-10 : 2743010002
ISBN-13 : 978-2743010003
Poids de l'article : 1.28 kg
Dimensions : 16 x 24 cmgr. IndexLangues : Français (fre) Mots-clés : Programmation mathématique convergence des suites éléments de topologie ensembles ouvertes fonctions convexes programmation linéaire optimisation unidimensionnelle programmation en nombres entiers programmation dynamique Index. décimale : 518. Analyse Numérique Algorithme-Méthodes Numériques Résumé : La programmation mathématique se propose pour objet l'étude théorique des problèmes d'optimisation ainsi que la conception et la mise en oeuvre des algorithmes de résolution. Ses applications sont extrêmement nombreuses et variées, que ce soit dans les sciences de l'ingénieur ou dans d'autres domaines des mathématiques appliquées notamment en recherche opérationnelle, en analyse numérique, en automatique, en ingénierie, en économie mathématique. De fait, l'impact économique des méthodes et des outils (logiciels) issus de la programmation mathématique est aujourd'hui considérable, des milliers d'entreprises les utilisant quotidiennement pour résoudre des problèmes liés à l'optimisation de leur productivité et de leur rentabilité : problèmes de localisation, de gestion de production, de logistique et de transport, de gestion de stocks, de tarification, d'optimisation de flux dans les réseaux, etc. Alors que chacun des principaux thèmes de la programmation mathématique a suscité une abondante littérature spécialisée, il n'existait pas d'ouvrage de synthèse couvrant, de façon non superficielle et unifiée, l'ensemble des sujets formant le coeur de la discipline, en particulier: la programmation non linéaire (sans et avec contraintes), l'optimisation des grands systèmes et les méthodes de décomposition, la programmation en nombres entiers et l'optimisation combinatoire, la programmation dynamique. Comme la précédente, cette nouvelle édition, mise à jour et augmentée, a pour but de combler cette lacune en présentant un panorama aussi vaste que possible de la théorie et des méthodes de la programmation mathématique, jusque dans ses développements les plus récents. En dépit de la grande diversité des thèmes abordés, ce volume s'organise autour d'un noyau des concepts fondamentaux qui lui confèrent cohérence et unité : théorie des applications multivoques et de la convergence globale, notions de points-cols et de fonction de perturbation, théorie de la dualité et ses extensions, notion de relaxation. En plus d'un ouvrage de synthèse et de référence, le lecteur désireux d'approfondir ses connaissances disposera, au travers d'un important ensemble d'exercices, et des 100 pages de corrigés détaillés qui les accompagnent, d'un outil à forte valeur ajoutée pédagogique. Issue des enseignements dispensés par l'auteur dans diverses écoles d'ingénieurs et en troisième cycle et master universitaires, la matière de ce livre est aussi le résultat de nombreuses années de recherche et de pratique quotidienne de la programmation mathématique et de l'optimisation combinatoire, tant dans le contexte académique qu'en interaction directe avec les domaines d'application. Programmation mathématique Théorie et algorithmes s'avérera un outil de travail irremplaçable :
pour les étudiants et chercheurs, comme support pédagogique et comme ouvrage de référence, sans équivalent pour l'importance du domaine couvert, pour les ingénieurs ou les praticiens, comme l'indispensable guide dans le choix des méthodes qui seront les plus efficaces pour résoudre leurs problèmes.
SOMMAIRE:
1-NOTIONS FONDAMENTALES
2-PROGRAMMATION LINéAIRE
3-OPTIMISATION UNIDIMENSIONNELLE
4-OPTIMISATION NON LINéAIRE SANS CONTRAINTE
5-OPTIMISATION NON-LINéAIRE AVEC CONTRAINTES
6-OPTIMISATION NON-LINéAIRE AVEC CONTRAINTES
7-PROGRAMMATION EN NOMBRES ENTIERS
8-RéSOLUTION DES PROBLéMES DE GRANDES DIMENSION:PROGRAMMATION LINéAIRE GéNéRALISéE ET TECHNIQUES DE DéCOMPOSITION
9-PROGRAMMATION DYNAMIQUENote de contenu : Programmation mathématique : Théorie et algorithmes (Français) Broché – 14 décembre 2007
de Michel Minoux (Auteur)
ANNEXE 1-SéPARATION D'ENSEMBLES CONVEXES.THéORéME DE FARKAS ET MINKOWSI THéORéME DE GORDAN
ANNEXE 2-EXISTANCE DE POINT-COLS EN PROGRAMMATION MATHéMATIQUE CONVEXE
ANNEXE3-RéSOLUTION DES SYSTéMES LINéAIRES EN NOMBRES ENTIERS
CORROGéS DES EXERCICES
INDEX
Programmation mathématique : théorie et algorithmes [texte imprimé] / Michel Minoux, Auteur . - 2e éd. . - Paris : Éd. Tec & doc, 2008 . - 1 vol. (XXIX-711 p.) : ill., couv. ill. en coul. ; 18X25 cm.
ISBN : 978-2-7430-1000-3 : 75 EUR
Notes biblioÉditeur : Tec & Doc Lavoisier; 2e édition (14 décembre 2007)
Langue : Français
ISBN-10 : 2743010002
ISBN-13 : 978-2743010003
Poids de l'article : 1.28 kg
Dimensions : 16 x 24 cmgr. Index
Langues : Français (fre)
Mots-clés : Programmation mathématique convergence des suites éléments de topologie ensembles ouvertes fonctions convexes programmation linéaire optimisation unidimensionnelle programmation en nombres entiers programmation dynamique Index. décimale : 518. Analyse Numérique Algorithme-Méthodes Numériques Résumé : La programmation mathématique se propose pour objet l'étude théorique des problèmes d'optimisation ainsi que la conception et la mise en oeuvre des algorithmes de résolution. Ses applications sont extrêmement nombreuses et variées, que ce soit dans les sciences de l'ingénieur ou dans d'autres domaines des mathématiques appliquées notamment en recherche opérationnelle, en analyse numérique, en automatique, en ingénierie, en économie mathématique. De fait, l'impact économique des méthodes et des outils (logiciels) issus de la programmation mathématique est aujourd'hui considérable, des milliers d'entreprises les utilisant quotidiennement pour résoudre des problèmes liés à l'optimisation de leur productivité et de leur rentabilité : problèmes de localisation, de gestion de production, de logistique et de transport, de gestion de stocks, de tarification, d'optimisation de flux dans les réseaux, etc. Alors que chacun des principaux thèmes de la programmation mathématique a suscité une abondante littérature spécialisée, il n'existait pas d'ouvrage de synthèse couvrant, de façon non superficielle et unifiée, l'ensemble des sujets formant le coeur de la discipline, en particulier: la programmation non linéaire (sans et avec contraintes), l'optimisation des grands systèmes et les méthodes de décomposition, la programmation en nombres entiers et l'optimisation combinatoire, la programmation dynamique. Comme la précédente, cette nouvelle édition, mise à jour et augmentée, a pour but de combler cette lacune en présentant un panorama aussi vaste que possible de la théorie et des méthodes de la programmation mathématique, jusque dans ses développements les plus récents. En dépit de la grande diversité des thèmes abordés, ce volume s'organise autour d'un noyau des concepts fondamentaux qui lui confèrent cohérence et unité : théorie des applications multivoques et de la convergence globale, notions de points-cols et de fonction de perturbation, théorie de la dualité et ses extensions, notion de relaxation. En plus d'un ouvrage de synthèse et de référence, le lecteur désireux d'approfondir ses connaissances disposera, au travers d'un important ensemble d'exercices, et des 100 pages de corrigés détaillés qui les accompagnent, d'un outil à forte valeur ajoutée pédagogique. Issue des enseignements dispensés par l'auteur dans diverses écoles d'ingénieurs et en troisième cycle et master universitaires, la matière de ce livre est aussi le résultat de nombreuses années de recherche et de pratique quotidienne de la programmation mathématique et de l'optimisation combinatoire, tant dans le contexte académique qu'en interaction directe avec les domaines d'application. Programmation mathématique Théorie et algorithmes s'avérera un outil de travail irremplaçable :
pour les étudiants et chercheurs, comme support pédagogique et comme ouvrage de référence, sans équivalent pour l'importance du domaine couvert, pour les ingénieurs ou les praticiens, comme l'indispensable guide dans le choix des méthodes qui seront les plus efficaces pour résoudre leurs problèmes.
SOMMAIRE:
1-NOTIONS FONDAMENTALES
2-PROGRAMMATION LINéAIRE
3-OPTIMISATION UNIDIMENSIONNELLE
4-OPTIMISATION NON LINéAIRE SANS CONTRAINTE
5-OPTIMISATION NON-LINéAIRE AVEC CONTRAINTES
6-OPTIMISATION NON-LINéAIRE AVEC CONTRAINTES
7-PROGRAMMATION EN NOMBRES ENTIERS
8-RéSOLUTION DES PROBLéMES DE GRANDES DIMENSION:PROGRAMMATION LINéAIRE GéNéRALISéE ET TECHNIQUES DE DéCOMPOSITION
9-PROGRAMMATION DYNAMIQUENote de contenu : Programmation mathématique : Théorie et algorithmes (Français) Broché – 14 décembre 2007
de Michel Minoux (Auteur)
ANNEXE 1-SéPARATION D'ENSEMBLES CONVEXES.THéORéME DE FARKAS ET MINKOWSI THéORéME DE GORDAN
ANNEXE 2-EXISTANCE DE POINT-COLS EN PROGRAMMATION MATHéMATIQUE CONVEXE
ANNEXE3-RéSOLUTION DES SYSTéMES LINéAIRES EN NOMBRES ENTIERS
CORROGéS DES EXERCICES
INDEX
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité ST14091 518/47.1 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Exclu du prêt