Titre : |
Algèbre fondamentale, arithmétique : niveau L3 et M1 |
Type de document : |
texte imprimé |
Auteurs : |
Georges Gras (1944-....), Auteur ; Marie-Nicole Gras (1942-....), Auteur |
Editeur : |
Paris : Ellipses |
Année de publication : |
2004 |
Collection : |
Mathématiques à l'université, ISSN 1767-2171 |
Importance : |
341 p. |
Présentation : |
graph., couv. ill. |
Format : |
26 cm |
ISBN/ISSN/EAN : |
2-7298-1956-8 |
Prix : |
33,50 EUR |
Note générale : |
Éditeur : ELLIPSES (15 juin 2004)
Langue : Français
Broché : 342 pages
ISBN-10 : 2729819568
ISBN-13 : 978-2729819569
Poids de l'article : 762 g
Dimensions : 17.5 x 2.1 x 26 cm |
Langues : |
Français (fre) |
Mots-clés : |
ensembles groupes homomorphismes produits directs anneaux divisibilité corps galois résolubilité modules groupes sous-groupes géométrie entiers algébriques |
Index. décimale : |
512 Algèbre |
Résumé : |
Niveau L3 et M1
Cet ouvrage regroupe les cours d'algèbre de quatre unités de valeur de Licence (L3) et Master (M1) de Mathématique de l'Université de Franche-Comté-Besançon, donnés pendant de nombreuses années par les auteurs.
Ces cours, utilisés à l'origine pour un enseignement par correspondance, sont censés permettre à l'étudiant de travailler de façon autonome. De ce fait, les auteurs ont rédigé des preuves très complètes et commentées, quittes à s'appesantir parfois, fourni beaucoup d'exemples, et proposé des exercices (avec solution ou très détaillés), non dans le but de compléter le cours, mais de permettre l'approfondissement de celui-ci.
Le programme est tout à fait basique et pragmatique (avec sur la fin une coloration plus "théorie des nombres" que "algèbre abstraite"), et ne prétend à aucune originalité de conception, à ceci près : les auteurs ont cherché à maintenir un cap logique et ensembliste rigoureux sans rien éluder, ce qui est tout à fait en phase avec les aspects algorithmiques toujours très exigeants, et qui sont donnés de façon assez systématique dans ce livre. Celui-ci devrait donc accompagner l'étudiant, de la Licence au Master, puis à la préparation au CAPES ou à l'agrégation, pour l'algèbre et l'arithmétique.
De nombreux enseignants pourront aussi y trouver des sources de réflexion. Des commentaires biographiques sur les mathématiciens cités sont donnés en notes de bas de page, et une bibliographie assez complète, organisée par thèmes et/ou niveaux, termine l'ouvrage.
|
Note de contenu : |
Bibliogr. p. 334-336. Index |
Algèbre fondamentale, arithmétique : niveau L3 et M1 [texte imprimé] / Georges Gras (1944-....), Auteur ; Marie-Nicole Gras (1942-....), Auteur . - Paris : Ellipses, 2004 . - 341 p. : graph., couv. ill. ; 26 cm. - ( Mathématiques à l'université, ISSN 1767-2171) . ISBN : 2-7298-1956-8 : 33,50 EUR Éditeur : ELLIPSES (15 juin 2004)
Langue : Français
Broché : 342 pages
ISBN-10 : 2729819568
ISBN-13 : 978-2729819569
Poids de l'article : 762 g
Dimensions : 17.5 x 2.1 x 26 cm Langues : Français ( fre)
Mots-clés : |
ensembles groupes homomorphismes produits directs anneaux divisibilité corps galois résolubilité modules groupes sous-groupes géométrie entiers algébriques |
Index. décimale : |
512 Algèbre |
Résumé : |
Niveau L3 et M1
Cet ouvrage regroupe les cours d'algèbre de quatre unités de valeur de Licence (L3) et Master (M1) de Mathématique de l'Université de Franche-Comté-Besançon, donnés pendant de nombreuses années par les auteurs.
Ces cours, utilisés à l'origine pour un enseignement par correspondance, sont censés permettre à l'étudiant de travailler de façon autonome. De ce fait, les auteurs ont rédigé des preuves très complètes et commentées, quittes à s'appesantir parfois, fourni beaucoup d'exemples, et proposé des exercices (avec solution ou très détaillés), non dans le but de compléter le cours, mais de permettre l'approfondissement de celui-ci.
Le programme est tout à fait basique et pragmatique (avec sur la fin une coloration plus "théorie des nombres" que "algèbre abstraite"), et ne prétend à aucune originalité de conception, à ceci près : les auteurs ont cherché à maintenir un cap logique et ensembliste rigoureux sans rien éluder, ce qui est tout à fait en phase avec les aspects algorithmiques toujours très exigeants, et qui sont donnés de façon assez systématique dans ce livre. Celui-ci devrait donc accompagner l'étudiant, de la Licence au Master, puis à la préparation au CAPES ou à l'agrégation, pour l'algèbre et l'arithmétique.
De nombreux enseignants pourront aussi y trouver des sources de réflexion. Des commentaires biographiques sur les mathématiciens cités sont donnés en notes de bas de page, et une bibliographie assez complète, organisée par thèmes et/ou niveaux, termine l'ouvrage.
|
Note de contenu : |
Bibliogr. p. 334-336. Index |
|  |