الفهرس الالي لمكتبة كلية العلوم و علوم التكنولوجيا
Détail de l'auteur
Auteur Daniel Sondaz |
Documents disponibles écrits par cet auteur
Affiner la recherche Interroger des sources externes
Bien maitriser les mathématiques Limites, applications continues, espaces complets / Daniel Sondaz
Titre : Bien maitriser les mathématiques Limites, applications continues, espaces complets : introduction la topologie ; L3, Masters, CAPES, Agrégation Type de document : texte imprimé Auteurs : Daniel Sondaz, ; jean-marie morvan, Editeur : france : Cépadu¨s-éditions Année de publication : impr. 2010. Importance : 1 vol. (IV-137 p.) Présentation : ill. en noir et en coul., couv. ill. en coul. Format : 15x21 cm. ISBN/ISSN/EAN : 978-2-85428-925-1 Prix : 23 EUR Langues : Français (fre) Mots-clés : Limites, applications continues, espaces complets prérequis limite continuité esp.top limite continuité esp.métr. limite continuité esp.norm espaces métriques complets Index. décimale : 515 Résumé : Cet ouvrage est une introduction à la topologie. Il s'adresse aux étudiants de L3 de mathématiques, de masters de mathématiques pures et appliquées, aux étudiants des écoles d'ingénieurs ainsi qu'aux étudiants qui préparent le C.A.P.E.S. et l'agrégation de mathématiques. Il propose à la fois des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par ordre de difficulté croissante. Le lecteur peut ainsi progresser à son rythme et de façon autonome dans cette discipline. Chaque chapitre est agrémenté de pages historiques, qui retracent la vie de certains mathématiciens ayant contribué au développement de la topologie. Sont abordées dans ce fascicule, les fonctions continues sur les espaces topologiques, métriques et normés, ainsi que la notion de complétude dans le cadre des espaces métriques. Les exercices proposés permettent aux lecteurs de maîtriser un large spectre d'exemples. Une fois ces notions assimilées, il pourra sans dificultés s'engager dans des études plus avancées. Table des matières Préface 1 Prérequis 1.1 Espaces topologiques 1.1.1 Définitions, notations 1.1.2 Topologie induite, topologie produit 1.1.3 Suite dans un espace topologique 1.2 Espaces métriques 1.2.1 Définitions, exemples 1.2.2 Boules 1.2.3 Topologie d'un espace métrique 1.3 Espaces vectoriels normés 1.3.1 Semi-norme, norme 1.3.2 Métrique associée à une norme 1.3.3 Normes équivalentes 2 Limite continuité esp. top. 2.1 Rappels de cours 2.1.1 Limite d'une fonction en un point 2.1.2 Continuité d'une application en un point 2.1.3 Application ouverte, fermée 2.1.4 Continuité et monotonie sur R 2.1.5 Homéomorphisme 2.1.6 Continuité et finesse des topologies 2.1.7 Topologie induite sur une partie 2.1.8 Fonction continue sur un produit 2.2 Exercices 3 Limite continuité esp. Métr 3.1 Rappels de cours 3.1.1 Suites, limite d'une fonction en un point 3.1.2 Continuité 3.1.3 Isométrie 3.1.4 Equivalence de métriques 3.2 Exercices 4 Limite continuité esp. norm. 4.1 Rappels de cours 4.1.1 Limite d'une fonction et continuité en un point 4.1.2 Applications linéaires et continues 4.2 Exercices 5 Espaces métriques complets 5.1 Rappels de cours 5.1.1 Suites de Cauchy, espaces métriques complets 5.1.2 Limite, continuité 5.1.3 Sous-espace complet 5.1.4 Complétion d'un espace métrique 5.1.5 Un théorème de point fixe 5.2 Exercices.sommaire:
1-prérequis
2-limite continuité esp.top
3-limite continuité esp.métr.
4-limite continuité esp.norm
5-espaces métriques completsNote de contenu : Éditeur : Cépaduès Éditions (5 mars 2010)
Langue : Français
Broché : 144 pages
ISBN-10 : 2854289250
ISBN-13 : 978-2854289251
Poids de l'article : 159 g
Dimensions : 14.5 x 0.8 x 20.5 cmBien maitriser les mathématiques Limites, applications continues, espaces complets : introduction la topologie ; L3, Masters, CAPES, Agrégation [texte imprimé] / Daniel Sondaz, ; jean-marie morvan, . - [S.l.] : france : Cépadu¨s-éditions, impr. 2010. . - 1 vol. (IV-137 p.) : ill. en noir et en coul., couv. ill. en coul. ; 15x21 cm.
ISBN : 978-2-85428-925-1 : 23 EUR
Langues : Français (fre)
Mots-clés : Limites, applications continues, espaces complets prérequis limite continuité esp.top limite continuité esp.métr. limite continuité esp.norm espaces métriques complets Index. décimale : 515 Résumé : Cet ouvrage est une introduction à la topologie. Il s'adresse aux étudiants de L3 de mathématiques, de masters de mathématiques pures et appliquées, aux étudiants des écoles d'ingénieurs ainsi qu'aux étudiants qui préparent le C.A.P.E.S. et l'agrégation de mathématiques. Il propose à la fois des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par ordre de difficulté croissante. Le lecteur peut ainsi progresser à son rythme et de façon autonome dans cette discipline. Chaque chapitre est agrémenté de pages historiques, qui retracent la vie de certains mathématiciens ayant contribué au développement de la topologie. Sont abordées dans ce fascicule, les fonctions continues sur les espaces topologiques, métriques et normés, ainsi que la notion de complétude dans le cadre des espaces métriques. Les exercices proposés permettent aux lecteurs de maîtriser un large spectre d'exemples. Une fois ces notions assimilées, il pourra sans dificultés s'engager dans des études plus avancées. Table des matières Préface 1 Prérequis 1.1 Espaces topologiques 1.1.1 Définitions, notations 1.1.2 Topologie induite, topologie produit 1.1.3 Suite dans un espace topologique 1.2 Espaces métriques 1.2.1 Définitions, exemples 1.2.2 Boules 1.2.3 Topologie d'un espace métrique 1.3 Espaces vectoriels normés 1.3.1 Semi-norme, norme 1.3.2 Métrique associée à une norme 1.3.3 Normes équivalentes 2 Limite continuité esp. top. 2.1 Rappels de cours 2.1.1 Limite d'une fonction en un point 2.1.2 Continuité d'une application en un point 2.1.3 Application ouverte, fermée 2.1.4 Continuité et monotonie sur R 2.1.5 Homéomorphisme 2.1.6 Continuité et finesse des topologies 2.1.7 Topologie induite sur une partie 2.1.8 Fonction continue sur un produit 2.2 Exercices 3 Limite continuité esp. Métr 3.1 Rappels de cours 3.1.1 Suites, limite d'une fonction en un point 3.1.2 Continuité 3.1.3 Isométrie 3.1.4 Equivalence de métriques 3.2 Exercices 4 Limite continuité esp. norm. 4.1 Rappels de cours 4.1.1 Limite d'une fonction et continuité en un point 4.1.2 Applications linéaires et continues 4.2 Exercices 5 Espaces métriques complets 5.1 Rappels de cours 5.1.1 Suites de Cauchy, espaces métriques complets 5.1.2 Limite, continuité 5.1.3 Sous-espace complet 5.1.4 Complétion d'un espace métrique 5.1.5 Un théorème de point fixe 5.2 Exercices.sommaire:
1-prérequis
2-limite continuité esp.top
3-limite continuité esp.métr.
4-limite continuité esp.norm
5-espaces métriques completsNote de contenu : Éditeur : Cépaduès Éditions (5 mars 2010)
Langue : Français
Broché : 144 pages
ISBN-10 : 2854289250
ISBN-13 : 978-2854289251
Poids de l'article : 159 g
Dimensions : 14.5 x 0.8 x 20.5 cmRéservation
Réserver ce document
Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité ST11742 515/275.1 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Exclu du prêt ST11743 515/275.2 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Disponible ST11744 515/275.3 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Disponible Fonctions différentiables / Daniel Sondaz
Titre : Fonctions différentiables : L3, masters, CAPES, agrégation Type de document : texte imprimé Auteurs : Daniel Sondaz, Auteur Editeur : Toulouse : Cépaduès éd. Année de publication : impr. 2013 Collection : Bien maîtriser les mathématiques, ISSN 2101-1311 Importance : 1 vol. (III-145 p.) Présentation : ill. Format : 15X21 cm. ISBN/ISSN/EAN : 978-2-36493-075-9 Prix : 23 EUR Note générale : Index Langues : Français (fre) Mots-clés : Fonctions différentiables espaces normés isomorphismes canoniques différentielles théorème de la moyenne suites séries PRéREQUIS APPLICATIONS DIFFéRENTIABLES LE THéORéME DE LA MOYENNE QUELQUES CONSéQUENCES Index. décimale : 515 Résumé : Cet ouvrage d’introduction au calcul différentiel s’adresse aux étudiants de L3 de Mathématiques, de Masters de Mathématiques Pures et Appliquées, aux étudiants des Écoles d’Ingénieurs, ainsi qu’aux étudiants qui préparent le C.A.P.E.S. et l’Agrégation de Mathématiques. Il introduit la notion d’application différentiable définie entre espaces de Banach. Il étudie ensuite les principales propriétés de telles applications, en insistant notamment sur le théorème de la moyenne et le théorème de Schwarz.
Il propose à la fois des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par ordre de difficulté croissante. Le lecteur peut ainsi progresser à son rythme dans cette discipline.
Les exercices proposés permettent aussi au lecteur de maîtriser un large spectre d’exemples.
Une fois ces notions assimilées, celui-ci pourra sans difficultés s’engager dans des études plus avancées.SOMMAIRE:PRéREQUIS
-APPLICATIONS DIFFéRENTIABLES
-LE THéORéME DE LA MOYENNE
-QUELQUES CONSéQUENCESNote de contenu : Éditeur : Cépaduès Éditions (20 août 2013)
Langue : Français
Broché : 152 pages
ISBN-10 : 2364930758
ISBN-13 : 978-2364930759
Poids de l'article : 200 g
Dimensions : 14.5 x 0.9 x 20.5 cmFonctions différentiables : L3, masters, CAPES, agrégation [texte imprimé] / Daniel Sondaz, Auteur . - Toulouse : Cépaduès éd., impr. 2013 . - 1 vol. (III-145 p.) : ill. ; 15X21 cm.. - (Bien maîtriser les mathématiques, ISSN 2101-1311) .
ISBN : 978-2-36493-075-9 : 23 EUR
Index
Langues : Français (fre)
Mots-clés : Fonctions différentiables espaces normés isomorphismes canoniques différentielles théorème de la moyenne suites séries PRéREQUIS APPLICATIONS DIFFéRENTIABLES LE THéORéME DE LA MOYENNE QUELQUES CONSéQUENCES Index. décimale : 515 Résumé : Cet ouvrage d’introduction au calcul différentiel s’adresse aux étudiants de L3 de Mathématiques, de Masters de Mathématiques Pures et Appliquées, aux étudiants des Écoles d’Ingénieurs, ainsi qu’aux étudiants qui préparent le C.A.P.E.S. et l’Agrégation de Mathématiques. Il introduit la notion d’application différentiable définie entre espaces de Banach. Il étudie ensuite les principales propriétés de telles applications, en insistant notamment sur le théorème de la moyenne et le théorème de Schwarz.
Il propose à la fois des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par ordre de difficulté croissante. Le lecteur peut ainsi progresser à son rythme dans cette discipline.
Les exercices proposés permettent aussi au lecteur de maîtriser un large spectre d’exemples.
Une fois ces notions assimilées, celui-ci pourra sans difficultés s’engager dans des études plus avancées.SOMMAIRE:PRéREQUIS
-APPLICATIONS DIFFéRENTIABLES
-LE THéORéME DE LA MOYENNE
-QUELQUES CONSéQUENCESNote de contenu : Éditeur : Cépaduès Éditions (20 août 2013)
Langue : Français
Broché : 152 pages
ISBN-10 : 2364930758
ISBN-13 : 978-2364930759
Poids de l'article : 200 g
Dimensions : 14.5 x 0.9 x 20.5 cmRéservation
Réserver ce document
Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité ST10871 515/106.1 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Exclu du prêt ST10872 515/106.2 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Disponible ST10873 515/106.3 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Disponible Introduction à la topologie / Daniel Sondaz
Titre : Introduction à la topologie : espaces topologiques, métriques, normés ; L3, masters, CAPES, agrégation Type de document : texte imprimé Auteurs : Daniel Sondaz, Auteur ; Jean-Marie Morvan (1953-....), Auteur ; Rémi Morvan, Collaborateur Editeur : Toulouse : Cepadues-Ed. Année de publication : DL 2008 Collection : Bien maîtriser les mathématiques, ISSN 2101-1311 Importance : 1 vol. (157 p.) Présentation : ill. en noir et en coul., couv. ill. Format : 15x21 cm. ISBN/ISSN/EAN : 978-2-85428-866-7 Prix : 23 EUR Note générale : Index Langues : Français (fre) Mots-clés : Introduction à la topologie espaces topologiques métriques espaces vectoriels noemés prérequis espaces métriques espacesv vectoriels normés Index. décimale : 515 Résumé : Cet ouvrage est une introduction à la topologie. Il s adresse aux étudiants de L3 de Mathématiques, de Mastères de Mathématiques Pures et Appliquées, aux étudiants des Écoles d Ingénieurs, ainsi qu aux étudiants qui préparent le C.A.P.E.S. et l Agrégation de Mathématiques. Il propose à la fois des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par ordre de difficulté croissante. Le lecteur peut ainsi progresser à son rythme et de façon autonome dans cette discipline. Chaque chapitre est agrémenté de pages historiques, qui replacent les résultats énoncés dans leur contexte. Sont abordées dans ce premier fascicule de topologie, les notions d espaces topologiques, d espaces métriques et d espaces normés, d ouverts, fermés, adhérence, intérieur, etc. Les exercices proposés permettent aux lecteurs de maîtriser un large spectre d exemples. Une fois ces notions assimilées, il pourra sans difficultés s engager dans des études plus avancées. Maître de Conférence de Mathématiques à l Université Claude Bernard Lyon 1, Daniel Sondaz a consacré une large partie de son temps à l enseignement en Licence et en Mastère de Mathématiques. Jean-Marie Morvan est Professeur de Mathématiques à l Université Claude Bernard Lyon 1. Rémi Morvan se consacre à la diffusion et la vulgarisation de textes scientifiques d enseignement et de recherche. TABLE DES MATIERES : 1 Prérequis 1.1 Applications 1.2 Familles 1.2.1 Union, intersection, complémentaire 1.2.2 Image d'une famille de parties 1.2.3 Image réciproque d'une famille de parties 1.2.4 Produit d'une famille de parties 2 Espaces Topologiques 2.1 Rappels de cours 2.1.1 Notion de topologie 2.1.2 Finesse comparée de deux topologies 2.1.3 Base d'une topologie 2.1.4 Voisinage 2.1.5 Partie fermée 2.1.6 Intérieur, adhérence, frontière 2.1.7 Séparation 2.1.8 Densité 2.1.9 Topologie induite sur une partie 2.1.10 Produit d'espaces topologiques 2.1.11 Suites dans un espace topologique 2.2 Exercices 2.2.1 Espaces topologiques 2.2.2 Ouverts, fermés, intérieur, adhérence 2.2.3 Topologie induite 2.2.4 Bases de topologie 2.2.5 Finesse comparée de topologies 2.2.6 Produit d'espaces topologiques 3 Espaces Métriques 3.1 Rappels de cours 3.1.1 Métrique 3.1.2 Boules 3.1.3 Topologie d'un espace métrique 3.1.4 Isométrie.sommaire:
1-prérequis
2-espaces topologiques
3-espaces métriques
4-espacesv vectoriels normésNote de contenu : Éditeur : Cepadues (31 décembre 2008)
Langue : Français
Broché : 162 pages
ISBN-10 : 2854288661
ISBN-13 : 978-2854288667
Poids de l'article : 222 g
Dimensions : 14.5 x 1 x 20.5 cmIntroduction à la topologie : espaces topologiques, métriques, normés ; L3, masters, CAPES, agrégation [texte imprimé] / Daniel Sondaz, Auteur ; Jean-Marie Morvan (1953-....), Auteur ; Rémi Morvan, Collaborateur . - Toulouse : Cepadues-Ed., DL 2008 . - 1 vol. (157 p.) : ill. en noir et en coul., couv. ill. ; 15x21 cm.. - (Bien maîtriser les mathématiques, ISSN 2101-1311) .
ISBN : 978-2-85428-866-7 : 23 EUR
Index
Langues : Français (fre)
Mots-clés : Introduction à la topologie espaces topologiques métriques espaces vectoriels noemés prérequis espaces métriques espacesv vectoriels normés Index. décimale : 515 Résumé : Cet ouvrage est une introduction à la topologie. Il s adresse aux étudiants de L3 de Mathématiques, de Mastères de Mathématiques Pures et Appliquées, aux étudiants des Écoles d Ingénieurs, ainsi qu aux étudiants qui préparent le C.A.P.E.S. et l Agrégation de Mathématiques. Il propose à la fois des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par ordre de difficulté croissante. Le lecteur peut ainsi progresser à son rythme et de façon autonome dans cette discipline. Chaque chapitre est agrémenté de pages historiques, qui replacent les résultats énoncés dans leur contexte. Sont abordées dans ce premier fascicule de topologie, les notions d espaces topologiques, d espaces métriques et d espaces normés, d ouverts, fermés, adhérence, intérieur, etc. Les exercices proposés permettent aux lecteurs de maîtriser un large spectre d exemples. Une fois ces notions assimilées, il pourra sans difficultés s engager dans des études plus avancées. Maître de Conférence de Mathématiques à l Université Claude Bernard Lyon 1, Daniel Sondaz a consacré une large partie de son temps à l enseignement en Licence et en Mastère de Mathématiques. Jean-Marie Morvan est Professeur de Mathématiques à l Université Claude Bernard Lyon 1. Rémi Morvan se consacre à la diffusion et la vulgarisation de textes scientifiques d enseignement et de recherche. TABLE DES MATIERES : 1 Prérequis 1.1 Applications 1.2 Familles 1.2.1 Union, intersection, complémentaire 1.2.2 Image d'une famille de parties 1.2.3 Image réciproque d'une famille de parties 1.2.4 Produit d'une famille de parties 2 Espaces Topologiques 2.1 Rappels de cours 2.1.1 Notion de topologie 2.1.2 Finesse comparée de deux topologies 2.1.3 Base d'une topologie 2.1.4 Voisinage 2.1.5 Partie fermée 2.1.6 Intérieur, adhérence, frontière 2.1.7 Séparation 2.1.8 Densité 2.1.9 Topologie induite sur une partie 2.1.10 Produit d'espaces topologiques 2.1.11 Suites dans un espace topologique 2.2 Exercices 2.2.1 Espaces topologiques 2.2.2 Ouverts, fermés, intérieur, adhérence 2.2.3 Topologie induite 2.2.4 Bases de topologie 2.2.5 Finesse comparée de topologies 2.2.6 Produit d'espaces topologiques 3 Espaces Métriques 3.1 Rappels de cours 3.1.1 Métrique 3.1.2 Boules 3.1.3 Topologie d'un espace métrique 3.1.4 Isométrie.sommaire:
1-prérequis
2-espaces topologiques
3-espaces métriques
4-espacesv vectoriels normésNote de contenu : Éditeur : Cepadues (31 décembre 2008)
Langue : Français
Broché : 162 pages
ISBN-10 : 2854288661
ISBN-13 : 978-2854288667
Poids de l'article : 222 g
Dimensions : 14.5 x 1 x 20.5 cmExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité ST11741 515/282.1 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Exclu du prêt Inversion locale, fonction implicite, formule de Taylor / Daniel Sondaz
Titre : Inversion locale, fonction implicite, formule de Taylor : L3, M1, CAPES, agrégation Type de document : texte imprimé Auteurs : Daniel Sondaz, Auteur Editeur : Toulouse : Cépaduès éd. Année de publication : impr. 2014 Collection : Bien maîtriser les mathématiques, ISSN 2101-1311 Importance : 1 vol. (III-144 p.) Présentation : ill. Format : 15x21 cm. ISBN/ISSN/EAN : 978-2-36493-096-4 Prix : 23 EUR Note générale : Éditeur : Editions Cépaduès (17 février 2014)
Langue : Français
Broché : 152 pages
ISBN-10 : 2364930960
ISBN-13 : 978-2364930964
Poids de l'article : 200 g
Dimensions : 14.5 x 0.8 x 20.5 cmLangues : Français (fre) Mots-clés : Espaces normés espaces de Banach Applications différentiables Différentielles partielles théorème de la moyenne accroissements finis Différentielles d’ordre supérieur Applications de classe C1 Applications p fois différentiables théorème de Schwarz Suites et séries d’applications différentiables Inversion locale Fonctions implicites formule de Taylor Index. décimale : 515 Résumé : Ce fascicule de calcul différentiel s’adresse aux étudiants de L3 de Mathématiques, de Masters de Mathématiques Pures et Appliquées, aux étudiants des Écoles d’Ingénieurs, ainsi qu’aux étudiants qui préparent le C.A.P.E.S. et l’Agrégation de Mathématiques. Il traite de deux théorèmes importants : celui de l’inversion locale et celui des fonctions implicites, à la base de l’analyse et de la géométrie différentielle. Il traite aussi des différentes formules de Taylor.
Il propose à la fois des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par ordre de difficulté croissante. Le lecteur peut ainsi progresser à son rythme dans cette discipline.
Les exercices proposés permettent aussi au lecteur de maîtriser un large spectre d’exemples. Une fois ces notions assimilées, celui-ci pourra sans difficultés s’engager dans des études plus avancées.
Table des matières
1 Prérequis
1.1 Espaces normés, espaces de Banach
1.2 Applications différentiables
1.3 Quelques propriétés classiques
1.4 Quelques exemples
1.5 Différentielles partielles
1.6 Le théorème de la moyenne (ou des accroissements finis)
1.7 Différentielles d’ordre supérieur
1.7.1 Applications de classe C1
1.7.2 Applications p fois différentiables
1.7.3 Le théorème de Schwarz
1.8 Suites et séries d’applications différentiables
2 Inversion locale
2.1 Rappels de cours
2.1.1 Notion de difféomorphisme
2.1.2 Conjugaison
2.1.3 Le théorème d’inversion locale
2.1.4 Immersions, submersions
2.1.5 Généralisation - le théorème du rang constant -
2.1.6 Un résultat utile
2.2 Exercices
3 Fonctions implicites
3.1 Rappels de cours
3.2 Exercices
4 Formule de Taylor
4.1 Rappels de cours
4.1.1 Les formules de Taylor
4.1.2 Analyticité
4.2 Exercices
Biographie de l'auteur
Maître de Conférence de Mathématiques à l’Université Claude Bernard Lyon 1, Daniel Sondaz a consacré une large partie de son temps à l’enseignement en Licence et en Master de Mathématiques.
Directeur de Collection : Jean-Marie Morvan est Professeur de Mathématiques à l’Université Claude Bernard Lyon 1.Note de contenu : Index Inversion locale, fonction implicite, formule de Taylor : L3, M1, CAPES, agrégation [texte imprimé] / Daniel Sondaz, Auteur . - Toulouse : Cépaduès éd., impr. 2014 . - 1 vol. (III-144 p.) : ill. ; 15x21 cm.. - (Bien maîtriser les mathématiques, ISSN 2101-1311) .
ISBN : 978-2-36493-096-4 : 23 EUR
Éditeur : Editions Cépaduès (17 février 2014)
Langue : Français
Broché : 152 pages
ISBN-10 : 2364930960
ISBN-13 : 978-2364930964
Poids de l'article : 200 g
Dimensions : 14.5 x 0.8 x 20.5 cm
Langues : Français (fre)
Mots-clés : Espaces normés espaces de Banach Applications différentiables Différentielles partielles théorème de la moyenne accroissements finis Différentielles d’ordre supérieur Applications de classe C1 Applications p fois différentiables théorème de Schwarz Suites et séries d’applications différentiables Inversion locale Fonctions implicites formule de Taylor Index. décimale : 515 Résumé : Ce fascicule de calcul différentiel s’adresse aux étudiants de L3 de Mathématiques, de Masters de Mathématiques Pures et Appliquées, aux étudiants des Écoles d’Ingénieurs, ainsi qu’aux étudiants qui préparent le C.A.P.E.S. et l’Agrégation de Mathématiques. Il traite de deux théorèmes importants : celui de l’inversion locale et celui des fonctions implicites, à la base de l’analyse et de la géométrie différentielle. Il traite aussi des différentes formules de Taylor.
Il propose à la fois des rappels de cours et des exercices corrigés de façon particulièrement détaillée, classés par ordre de difficulté croissante. Le lecteur peut ainsi progresser à son rythme dans cette discipline.
Les exercices proposés permettent aussi au lecteur de maîtriser un large spectre d’exemples. Une fois ces notions assimilées, celui-ci pourra sans difficultés s’engager dans des études plus avancées.
Table des matières
1 Prérequis
1.1 Espaces normés, espaces de Banach
1.2 Applications différentiables
1.3 Quelques propriétés classiques
1.4 Quelques exemples
1.5 Différentielles partielles
1.6 Le théorème de la moyenne (ou des accroissements finis)
1.7 Différentielles d’ordre supérieur
1.7.1 Applications de classe C1
1.7.2 Applications p fois différentiables
1.7.3 Le théorème de Schwarz
1.8 Suites et séries d’applications différentiables
2 Inversion locale
2.1 Rappels de cours
2.1.1 Notion de difféomorphisme
2.1.2 Conjugaison
2.1.3 Le théorème d’inversion locale
2.1.4 Immersions, submersions
2.1.5 Généralisation - le théorème du rang constant -
2.1.6 Un résultat utile
2.2 Exercices
3 Fonctions implicites
3.1 Rappels de cours
3.2 Exercices
4 Formule de Taylor
4.1 Rappels de cours
4.1.1 Les formules de Taylor
4.1.2 Analyticité
4.2 Exercices
Biographie de l'auteur
Maître de Conférence de Mathématiques à l’Université Claude Bernard Lyon 1, Daniel Sondaz a consacré une large partie de son temps à l’enseignement en Licence et en Master de Mathématiques.
Directeur de Collection : Jean-Marie Morvan est Professeur de Mathématiques à l’Université Claude Bernard Lyon 1.Note de contenu : Index Réservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité ST13556 515/133.1 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Exclu du prêt ST13557 515/133.2 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Disponible