الفهرس الالي لمكتبة كلية العلوم الدقيقة و الاعلام الالي
Détail de l'auteur
Auteur Srishti D. Chatterji |
Documents disponibles écrits par cet auteur
Affiner la recherche Interroger des sources externes
Cours d'analyse tome 3 Equations différentielles ordinaires et aux dérivées partielles / Srishti D. Chatterji
Titre : Cours d'analyse tome 3 Equations différentielles ordinaires et aux dérivées partielles Type de document : texte imprimé Auteurs : Srishti D. Chatterji Editeur : Lausanne : Presses polytechniques et universitaires romandes Année de publication : 1998 Importance : xxv, 755 p. Format : 24 cm ISBN/ISSN/EAN : 978-2-88074-350-5 Mots-clés : Equations différentielles ordinaires dérivées partielles Résumé : L'objectif principal de ce troisième volume est de donner une introduction à la théorie des équations différentielles ordinaires et aux dérivées partielles et d'introduire certains outils de base pour les méthodes mathématiques de la physique. La première partie présente la théorie fondamentale des équations différentielles ordinaires en utilisant les méthodes analytiques classiques. La deuxième partie développe les outils de bases pour l'étude des équations aux dérivées partielles. La troisième et dernière partie concerne les équations aux dérivées partielles. Outil de travail conçu pour les étudiants en mathématiques et physique dans leurs deuxième et troisième années d'études, la richesse et la complétude de son index en font un manuel de référence pour tout mathématicien. Sommaire - CONVENTIONS, NOTATIONS ET RAPPELS : Ensembles et fonctions - Nombres réels - Cardinalité - Quelques fonctions réelles - Notations topologiques - Espace Ck - Intégration - Algèbre linéaire - Conventions diverses - Partie I EQUATIONS DIFFERENTIELLES ORDINAIRES Existence et unicité des solutions : Généralités sur les équations différentielles ordinaires - Théorèmes généraux - Equations linéaires - Prolongement des solutions - Exemples - Compléments - Remarques - Exercices - Equations linéaires : Systèmes linéaires généraux du premier ordre - Systèmes linéaires du premier ordre à coefficients constants - Calcul de exp(tA) - Equations linéaires d'ordre supérieur - Equations linéaires du second ordre - Solutions à l'aide des séries entières - Etude qualitative des équations différentielles linéaires du second ordre - Exercices - Compléments - Partie II Analyse Hilbertienne Espaces de Hilbert : Notions fondamentales - Exemples - Espaces séparables - Systèmes orthogonaux - Séries et sommes dans un espace préhilbertien - Bases orthonormales - Approximation optimale - Compléments - Développements orthogonaux : Séries de Fourrier - Convergence ponctuelle des séries de Fourrier - Exercices - Compléments et généralisations - Séries de Fourier des distributions - Exercices - Polynômes orthogonaux - Exercices - Compléments et remarques - Opérateurs dans les espaces Hilbertiens : Notions fondamentales - Exemples - Opérateurs compacts - Théorie spectrale pour les opérateurs compacts symétriques - Equations intégrales - Spectre d'un opérateur borné - Exercices - Opérateurs non bornés - Spectre des opérateurs non bornés - Langage de la mécanique quantique - Remarques - TRANSFORMATIONS DE FOURIER ET DE LAPLACE : Transformation de Fourier - Développements théoriques - Formule de Stirling - Distributions - Compléments - Exercices - Compléments concernant la transformation de Fourier - Transformation de Laplace - Développements théoriques -Transformée de Laplace des distributions - Applications aux équations différentielles - Exercices - Remarques complémentaires concernant la transformation de Laplace - PARTI III Equations aux dérivées partielles Introduction : Généralités - Equations aux dérivées partielles linéaires du premier ordre - Equations aux dérivées partielles linéaires du second ordre - Solutions formelles - Conditions aux limites non homogènes - Exemples d'opérateurs - Appendice - Exercices - Compléments - PROBLEMES ASSOCIES AU LAPLACIEN : Formules préliminaires - Fonctions harmoniques - Fonctions sous-harmoniques - Propriétés des fonctions harmoniques - Problème de Dirichlet - Valeurs propres - Equations de la chaleur - Equation des ondes - Exercices - Indications bibliographiques - Réponses aux exercices Cours d'analyse tome 3 Equations différentielles ordinaires et aux dérivées partielles [texte imprimé] / Srishti D. Chatterji . - Lausanne : Presses polytechniques et universitaires romandes, 1998 . - xxv, 755 p. ; 24 cm.
ISBN : 978-2-88074-350-5
Mots-clés : Equations différentielles ordinaires dérivées partielles Résumé : L'objectif principal de ce troisième volume est de donner une introduction à la théorie des équations différentielles ordinaires et aux dérivées partielles et d'introduire certains outils de base pour les méthodes mathématiques de la physique. La première partie présente la théorie fondamentale des équations différentielles ordinaires en utilisant les méthodes analytiques classiques. La deuxième partie développe les outils de bases pour l'étude des équations aux dérivées partielles. La troisième et dernière partie concerne les équations aux dérivées partielles. Outil de travail conçu pour les étudiants en mathématiques et physique dans leurs deuxième et troisième années d'études, la richesse et la complétude de son index en font un manuel de référence pour tout mathématicien. Sommaire - CONVENTIONS, NOTATIONS ET RAPPELS : Ensembles et fonctions - Nombres réels - Cardinalité - Quelques fonctions réelles - Notations topologiques - Espace Ck - Intégration - Algèbre linéaire - Conventions diverses - Partie I EQUATIONS DIFFERENTIELLES ORDINAIRES Existence et unicité des solutions : Généralités sur les équations différentielles ordinaires - Théorèmes généraux - Equations linéaires - Prolongement des solutions - Exemples - Compléments - Remarques - Exercices - Equations linéaires : Systèmes linéaires généraux du premier ordre - Systèmes linéaires du premier ordre à coefficients constants - Calcul de exp(tA) - Equations linéaires d'ordre supérieur - Equations linéaires du second ordre - Solutions à l'aide des séries entières - Etude qualitative des équations différentielles linéaires du second ordre - Exercices - Compléments - Partie II Analyse Hilbertienne Espaces de Hilbert : Notions fondamentales - Exemples - Espaces séparables - Systèmes orthogonaux - Séries et sommes dans un espace préhilbertien - Bases orthonormales - Approximation optimale - Compléments - Développements orthogonaux : Séries de Fourrier - Convergence ponctuelle des séries de Fourrier - Exercices - Compléments et généralisations - Séries de Fourier des distributions - Exercices - Polynômes orthogonaux - Exercices - Compléments et remarques - Opérateurs dans les espaces Hilbertiens : Notions fondamentales - Exemples - Opérateurs compacts - Théorie spectrale pour les opérateurs compacts symétriques - Equations intégrales - Spectre d'un opérateur borné - Exercices - Opérateurs non bornés - Spectre des opérateurs non bornés - Langage de la mécanique quantique - Remarques - TRANSFORMATIONS DE FOURIER ET DE LAPLACE : Transformation de Fourier - Développements théoriques - Formule de Stirling - Distributions - Compléments - Exercices - Compléments concernant la transformation de Fourier - Transformation de Laplace - Développements théoriques -Transformée de Laplace des distributions - Applications aux équations différentielles - Exercices - Remarques complémentaires concernant la transformation de Laplace - PARTI III Equations aux dérivées partielles Introduction : Généralités - Equations aux dérivées partielles linéaires du premier ordre - Equations aux dérivées partielles linéaires du second ordre - Solutions formelles - Conditions aux limites non homogènes - Exemples d'opérateurs - Appendice - Exercices - Compléments - PROBLEMES ASSOCIES AU LAPLACIEN : Formules préliminaires - Fonctions harmoniques - Fonctions sous-harmoniques - Propriétés des fonctions harmoniques - Problème de Dirichlet - Valeurs propres - Equations de la chaleur - Equation des ondes - Exercices - Indications bibliographiques - Réponses aux exercices Réservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité fsei03252 515-42.1 Ouvrage Faculté des Sciences Exactes et Informatique 000 - Informatique, information, ouvrages généraux Disponible fsei14036 515-42.2 Ouvrage Faculté des Sciences Exactes et Informatique 500 - Sciences de la nature et Mathématiques Disponible