Titre : |
Intégrales curvilignes et de surfaces |
Type de document : |
texte imprimé |
Auteurs : |
Maurice Lofficial, Auteur ; Daniel Tanré, Auteur |
Editeur : |
Paris : Ellipses |
Année de publication : |
2006 |
Collection : |
Mathématiques à l'université, ISSN 1767-2171 |
Importance : |
1 vol. (205 p.) |
Présentation : |
ill., couv. ill. |
Format : |
20X26 cm. |
ISBN/ISSN/EAN : |
978-2-7298-2876-9 |
Prix : |
18 EUR |
Note générale : |
Bibliogr., 1 p. Index |
Langues : |
Français (fre) |
Mots-clés : |
Intégrales curvilignes et de surfaces surfaces intégration intégrales multiples vecteurs et formes différentielles topologie CALCUL DIFFéRENTIEL DANS R SURFACES THéORIE DE L'INTéGRATION CALCUL D'INTéGRALES MULTIPLES CHAMPS DE VECTEURS ET FORMES DIFFéRENTIELLES INTéGRALES CURVILIGNES INTéGRALES DE SURFACE THéORéME DE STOKES TOPOLOGIE DE R |
Index. décimale : |
515 |
Résumé : |
Ce livre, issu de plusieurs années d'enseignement, traite des intégrales curvilignes, des intégrales de surfaces et de formules de transformation « à la Stokes ». Après un chapitre de calcul différentiel, nous précisons :
– les domaines d'intégration : les chemins et les surfaces,
– les outils utilisés : les intégrales multiples,
– les objets à intégrer : les champs et les formes.
Nous avons choisi une présentation menant de front les formes différentielles et leur traduction en champs de vecteurs et champs scalaires. Chaque définition et chaque résultat y figurent donc sous les deux aspects : champs et formes.
Une fois ces acteurs mis en place, les derniers chapitres sont consacrés aux intégrales sur les chemins et sur les surfaces ainsi qu'à trois situations particulières du théorème de Stokes : la formule d'Ostrogradsky, la formule de Green-Riemann dans le plan et son extension à l'espace, appelée ici formule de Stokes. Ces théorèmes sont illustrés par l'équation de continuité en mécanique des fluides et les équations de Maxwell en électromagnétisme.
De nombreux exercices, corrigés ou avec indications de solutions, permettent au lecteur de tester son acquis de connaissances.
SOMMAIRE:
1-CALCUL DIFF2RENTIEL DANS R
2-SURFACES
3-THéORIE DE L'INTéGRATION
4-CALCUL D'INTéGRALES MULTIPLES
5-CHAMPS DE VECTEURS ET FORMES DIFFéRENTIELLES
6-INTéGRALES CURVILIGNES
7-INTéGRALES DE SURFACE
8-THéORéME DE STOKES
9-TOPOLOGIE DE R
|
Note de contenu : |
Éditeur : ELLIPSES (15 juillet 2006)
Langue : Français
Broché : 205 pages
ISBN-10 : 2729828761
ISBN-13 : 978-2729828769
Poids de l'article : 458 g
Dimensions : 17.5 x 1.3 x 26 cm |
Intégrales curvilignes et de surfaces [texte imprimé] / Maurice Lofficial, Auteur ; Daniel Tanré, Auteur . - Paris : Ellipses, 2006 . - 1 vol. (205 p.) : ill., couv. ill. ; 20X26 cm.. - ( Mathématiques à l'université, ISSN 1767-2171) . ISBN : 978-2-7298-2876-9 : 18 EUR Bibliogr., 1 p. Index Langues : Français ( fre)
Mots-clés : |
Intégrales curvilignes et de surfaces surfaces intégration intégrales multiples vecteurs et formes différentielles topologie CALCUL DIFFéRENTIEL DANS R SURFACES THéORIE DE L'INTéGRATION CALCUL D'INTéGRALES MULTIPLES CHAMPS DE VECTEURS ET FORMES DIFFéRENTIELLES INTéGRALES CURVILIGNES INTéGRALES DE SURFACE THéORéME DE STOKES TOPOLOGIE DE R |
Index. décimale : |
515 |
Résumé : |
Ce livre, issu de plusieurs années d'enseignement, traite des intégrales curvilignes, des intégrales de surfaces et de formules de transformation « à la Stokes ». Après un chapitre de calcul différentiel, nous précisons :
– les domaines d'intégration : les chemins et les surfaces,
– les outils utilisés : les intégrales multiples,
– les objets à intégrer : les champs et les formes.
Nous avons choisi une présentation menant de front les formes différentielles et leur traduction en champs de vecteurs et champs scalaires. Chaque définition et chaque résultat y figurent donc sous les deux aspects : champs et formes.
Une fois ces acteurs mis en place, les derniers chapitres sont consacrés aux intégrales sur les chemins et sur les surfaces ainsi qu'à trois situations particulières du théorème de Stokes : la formule d'Ostrogradsky, la formule de Green-Riemann dans le plan et son extension à l'espace, appelée ici formule de Stokes. Ces théorèmes sont illustrés par l'équation de continuité en mécanique des fluides et les équations de Maxwell en électromagnétisme.
De nombreux exercices, corrigés ou avec indications de solutions, permettent au lecteur de tester son acquis de connaissances.
SOMMAIRE:
1-CALCUL DIFF2RENTIEL DANS R
2-SURFACES
3-THéORIE DE L'INTéGRATION
4-CALCUL D'INTéGRALES MULTIPLES
5-CHAMPS DE VECTEURS ET FORMES DIFFéRENTIELLES
6-INTéGRALES CURVILIGNES
7-INTéGRALES DE SURFACE
8-THéORéME DE STOKES
9-TOPOLOGIE DE R
|
Note de contenu : |
Éditeur : ELLIPSES (15 juillet 2006)
Langue : Français
Broché : 205 pages
ISBN-10 : 2729828761
ISBN-13 : 978-2729828769
Poids de l'article : 458 g
Dimensions : 17.5 x 1.3 x 26 cm |
|  |