الفهرس الالي لمكتبة كلية العلوم و علوم التكنولوجيا
Détail de l'auteur
Documents disponibles écrits par cet auteur
Affiner la recherche Interroger des sources externes
Titre : |
Spectral methods : algorithms, analysis and applications |
Type de document : |
document électronique |
Auteurs : |
Jie Shen (1959-....), Auteur ; Tao Tang, Auteur ; Li-Lian Wang, Auteur ; Tao Tang, Auteur ; Li-Lian Wang, Auteur |
Editeur : |
Berlin, Heidelberg : Springer Berlin Heidelberg |
Année de publication : |
2011 |
Autre Editeur : |
Springer e-books |
Collection : |
Springer Series in Computational Mathematics, ISSN 0179-3632 num. 41 |
ISBN/ISSN/EAN : |
978-3-540-71041-7 |
Langues : |
Anglais (eng) |
Mots-clés : |
Spectral methods fourier spectral methods orthogonal polynomials volterra integral equations higher-order differential equations unbounded domains separable multi-dimentional domains essentialmathematical concepts |
Index. décimale : |
515.3 |
Résumé : |
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online tohelp the readers to develop their own spectral codes for their specific applications |
Note de contenu : |
Introduction
Fourier Spectral Methods for Periodic Problems
Orthogonol Polynomials and Related Approximation Results
Second-Order Two-Point Boundary Value Problems
Integral Equations
High-Order DifferentialEquations
Problems in Unbounded Domains
Multi-Dimensional Domains
Mathematical Preliminaries
Basic iterative methods
Basic time discretization schemes
Instructions for routines in Matlab. |
En ligne : |
http://dx.doi.org/10.1007/978-3-540-71041-7 |
Format de la ressource électronique : |
PDF |
Spectral methods : algorithms, analysis and applications [document électronique] / Jie Shen (1959-....), Auteur ; Tao Tang, Auteur ; Li-Lian Wang, Auteur ; Tao Tang, Auteur ; Li-Lian Wang, Auteur . - Berlin, Heidelberg : Springer Berlin Heidelberg : [S.l.] : Springer e-books, 2011. - ( Springer Series in Computational Mathematics, ISSN 0179-3632; 41) . ISBN : 978-3-540-71041-7 Langues : Anglais ( eng)
Mots-clés : |
Spectral methods fourier spectral methods orthogonal polynomials volterra integral equations higher-order differential equations unbounded domains separable multi-dimentional domains essentialmathematical concepts |
Index. décimale : |
515.3 |
Résumé : |
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online tohelp the readers to develop their own spectral codes for their specific applications |
Note de contenu : |
Introduction
Fourier Spectral Methods for Periodic Problems
Orthogonol Polynomials and Related Approximation Results
Second-Order Two-Point Boundary Value Problems
Integral Equations
High-Order DifferentialEquations
Problems in Unbounded Domains
Multi-Dimensional Domains
Mathematical Preliminaries
Basic iterative methods
Basic time discretization schemes
Instructions for routines in Matlab. |
En ligne : |
http://dx.doi.org/10.1007/978-3-540-71041-7 |
Format de la ressource électronique : |
PDF |
|  |
Exemplaires (1)
|
ST12798 | 515.3/84.1 | Ouvrage | Faculté des Sciences et de la Technologie | 500 - Sciences de la nature et Mathématiques | Exclu du prêt |