الفهرس الالي لمكتبة كلية العلوم و علوم التكنولوجيا
Détail d'une collection
|
Documents disponibles dans la collection
Affiner la recherche Interroger des sources externes
Titre : Spectral methods : algorithms, analysis and applications Type de document : document électronique Auteurs : Jie Shen (1959-....), Auteur ; Tao Tang, Auteur ; Li-Lian Wang, Auteur ; Tao Tang, Auteur ; Li-Lian Wang, Auteur Editeur : Berlin, Heidelberg : Springer Berlin Heidelberg Année de publication : 2011 Autre Editeur : Springer e-books Collection : Springer Series in Computational Mathematics, ISSN 0179-3632 num. 41 ISBN/ISSN/EAN : 978-3-540-71041-7 Langues : Anglais (eng) Mots-clés : Spectral methods fourier spectral methods orthogonal polynomials volterra integral equations higher-order differential equations unbounded domains separable multi-dimentional domains essentialmathematical concepts Index. décimale : 515.3 Résumé : Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online tohelp the readers to develop their own spectral codes for their specific applications Note de contenu : Introduction
Fourier Spectral Methods for Periodic Problems
Orthogonol Polynomials and Related Approximation Results
Second-Order Two-Point Boundary Value Problems
Integral Equations
High-Order DifferentialEquations
Problems in Unbounded Domains
Multi-Dimensional Domains
Mathematical Preliminaries
Basic iterative methods
Basic time discretization schemes
Instructions for routines in Matlab.En ligne : http://dx.doi.org/10.1007/978-3-540-71041-7 Format de la ressource électronique : Spectral methods : algorithms, analysis and applications [document électronique] / Jie Shen (1959-....), Auteur ; Tao Tang, Auteur ; Li-Lian Wang, Auteur ; Tao Tang, Auteur ; Li-Lian Wang, Auteur . - Berlin, Heidelberg : Springer Berlin Heidelberg : [S.l.] : Springer e-books, 2011. - (Springer Series in Computational Mathematics, ISSN 0179-3632; 41) .
ISBN : 978-3-540-71041-7
Langues : Anglais (eng)
Mots-clés : Spectral methods fourier spectral methods orthogonal polynomials volterra integral equations higher-order differential equations unbounded domains separable multi-dimentional domains essentialmathematical concepts Index. décimale : 515.3 Résumé : Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online tohelp the readers to develop their own spectral codes for their specific applications Note de contenu : Introduction
Fourier Spectral Methods for Periodic Problems
Orthogonol Polynomials and Related Approximation Results
Second-Order Two-Point Boundary Value Problems
Integral Equations
High-Order DifferentialEquations
Problems in Unbounded Domains
Multi-Dimensional Domains
Mathematical Preliminaries
Basic iterative methods
Basic time discretization schemes
Instructions for routines in Matlab.En ligne : http://dx.doi.org/10.1007/978-3-540-71041-7 Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité ST12798 515.3/84.1 Ouvrage Faculté des Sciences et de la Technologie 500 - Sciences de la nature et Mathématiques Exclu du prêt