الفهرس الالي للمكتبة المركزية بجامعة عبد الحميد بن باديس - مستغانم
Titre : |
Finite element methods for thin shell problems |
Type de document : |
texte imprimé |
Auteurs : |
M. Bernadou |
Mention d'édition : |
1st English language ed. |
Editeur : |
Chichester : Wiley |
Année de publication : |
1996 |
Importance : |
xvi, 360 p. |
Présentation : |
ill. |
Format : |
25 cm |
ISBN/ISSN/EAN : |
978-0-471-95647-1 |
Note générale : |
Translation of: MÐethodes d'ÐelÐements finis pour les problÆemes de coques minces. |
Langues : |
Anglais (eng) |
Mots-clés : |
Engineering |
Index. décimale : |
624.1 |
Résumé : |
This is a collection of the main results of mathematical and numerical analyses related to the approximation of the solutions of thin shell problems by finite element methods. The main modelizations of thin shells are recalled and the associate existence results in appropriate functional spaces are proved. The approximation of these solutions by different kinds of finite element methods is examined in detail: the formulation of approximate problems; the study of existence and the convergence of the approximate solutions to the exact solution; and the derivation of a priori error estimates. These approximations take into account the approximations of displacement and geometry, and those related to the use of numerical integration techniques. |
Finite element methods for thin shell problems [texte imprimé] / M. Bernadou . - 1st English language ed. . - Chichester : Wiley, 1996 . - xvi, 360 p. : ill. ; 25 cm. ISBN : 978-0-471-95647-1 Translation of: MÐethodes d'ÐelÐements finis pour les problÆemes de coques minces. Langues : Anglais ( eng)
Mots-clés : |
Engineering |
Index. décimale : |
624.1 |
Résumé : |
This is a collection of the main results of mathematical and numerical analyses related to the approximation of the solutions of thin shell problems by finite element methods. The main modelizations of thin shells are recalled and the associate existence results in appropriate functional spaces are proved. The approximation of these solutions by different kinds of finite element methods is examined in detail: the formulation of approximate problems; the study of existence and the convergence of the approximate solutions to the exact solution; and the derivation of a priori error estimates. These approximations take into account the approximations of displacement and geometry, and those related to the use of numerical integration techniques. |
| |
Réservation
Réserver ce document
Exemplaires (2)
|
CF2-003655 | 517-164.1 | Ouvrage | Bibliothèque Centrale | 500 - Sciences de la nature et Mathématiques | Exclu du prêt |
F2-005276 | 517-164.2 | Ouvrage | Bibliothèque Centrale | 500 - Sciences de la nature et Mathématiques | Disponible |